
studied in general form in [5], we do not consider these questions here. Figure 2 illus- 
trates the dependence of the Nusselt number Nu (dimensionless convective heat flux through 
the cavity) on the Rayleigh number Ra for a perfect sphere s E 0 (theory:solid line; the 
region containing the experimental points from [4] is shaded). Near Ra, theory gives a 
linear dependence of Nu -- 1 on Ra -- Ra,, which differs from the experimental reBults in [4]. 
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EXCITATION OF UNSTABLE WAVES IN BOUNDARY LAYER ON A 

VIBRATING SURFACE 

A. M. Tumin and A. V. Fedorov UDC 532.526.013 

Modern concepts [i] on boundary-layer transition make it possible to develop a computa- 
tional method for transition Reynolds numbers which includes the analysis of the growth of 
unstable disturbances in the boundary layer and the determination of the section at which 
their amplitude initially attains the critical value. Here, in order to develop a closed 
computational scheme it is necessary to solve the problem of excitation of the so-called Toll- 
mien- Schlichting waves in the boundary layer. In experimental and theoretical studies 
[2-6], it has been shown that the Tollmien-- Schlichting wave can arise due to flow nonuni- 
formities of various types (sharp leading edge of the model, individual roughness element 
on the surface, localized effect on boundary layer). These results are discussed in suffi- 
cient detail in [7]. The adiabatic type excitation mechanism caused by natural, weak flow 
nonuniformity in the boundary layer on a smooth surface was suggested in [8]. A comprehen- 
sive qualitative and quantitative analysis of different types of excitation of Tollmien-- 
Schlichting waves is necessary to solve applied problems. The present paper considers the 
excitation of unstable waves in boundary layer on a vibrating surface. The formulation of 
such a problem is discussed in [i]. 

Problem Formulation. Consider a two-dimensional incompressible boundary layer. Small 
differences arising from compressibility will be shown later. The coordinate system chosen 
is: x, distance from the leading edge of the model, downstream along the surface; y, distance 
normal to the surface; the reference scales are: certain length xo for the coordinate x, 
/Vxo/Uo for y, where ~ is the coefficient of kinematic viscosity, Uo is the characteristic 
free stream velocity. Time is defined in units Of r pressure in terms of poUo ~, 
where po is the density. Assume that the mean flow is weakly nonuniform in the absence of 
disturbances, i.e., for the streamwise and normal components of velocity U and V*, respec- 
tively, there are relations U = U(x, y), V* = cV(x, y), e = Re -t = ~ o  << i. Linearized 
Navier--Stokes equations after Fourier transformation in time are written in the form [8] 

oAoy -H,A = e//~-5-Zx~ ~_6HsA,. (1) 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
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where A(x, y) is a four component vector function: A: is the fluctuation in the x component 
of velocity, A~ is the pressure fluctuation, A3 is the fluctuation in the y component of 
velocity, and A~ = 3A1/3y -- e3A3/3x: 

Hi==  0 0 i(o 0 --U Re -1  

0 0 0 ; H 2 =  1 0  0 0 0 i  i ' 
- - i~oRe 0 BeU' 0 !ll~eU Be 0 

where ~ is the disturbance frequency; U' = 3U/3y. The matrix H3 in Eq, (I) contains only 
terms proportional to 3U/3x, V, ~V/3y, and is associated withweak nonparalleinessof the boundary 
layer flow. Assume that at a certain section the initial conditions are specified in the 
form of a vector function 

A(Xl' Y) = A~ (2)  

Vibration of the surface in the analyzed segment will be simulated in the form of a small 
amplitude running wave. For the Fourier harmonics under consideration the equation for the 
surface Yw(X) is represented as Yw =aexp[i~o(x--x~)/~, where ~o > 0; xl is a certain fixed coordi- 
hate. Our choice of reference scales corresponds to the wave number ao measured in units of 

and the wavelengths are of the order of boundary layer thickness and are small com- 
pared to xo. The no slip condition at the surface must be satisfied for the disturbed flow. 
Since the amplitude of vibration is small compared to its wavelength, we get 

! r U~y~ (x) e - i ~  ~ A1 (x,  O) e - ~ t  = 0 (aZ), 
(3)  

0 X ~ 0U "X A~ (x, 0) e - ~ t  = . ~  [y~ ( ) e-~*] + 0 (a)L U~ = ~ ~ , 0). 

Thus, boundary conditions for the system (I)take the form 

A t (x, 0) = -- aU~ exp [ie 0 (x -- xi)/8], (3a) 

A 3 ( x , O )  = - - i ~ a e x p [ i a o ( x - - x l ) / 8  ]. 

As y § ~ we assume boundness of the solution: 

lAy I < oo, j ---- 1 . . . . .  4. (4)  

The problem formulated in (i)-(4), generally speaking, is incorrect. Hence, the initial con- 
ditions Ao are supplemented by conditions that they permit solution with finite growth rate. 
Actually this requirement for regularization lends to the assumption that the initial condi- 
tions are orthogonal to the eigenfunctions of the linearized Navier--Stokes equations, re- 
lated to the disturbances propagating upstream, and such solutions are not considered in fur- 
ther analysis [9, I0]. 

Biorthogonal Vector System. The solution to the problem (1)-(4) for the case when the 
mean flow is weakly nonuniform along x will be expressed in the form of a series of biortho- 
gonal vector systems for the locally homogeneous problem {A~(x, y), B~(x, y)}, formulated in 
[8, 9]. 

OA=/Oy -- H1A = =- icztI.A=, 

V = O, A=I = A=3 = O, y - +  co, IA=jJ <:  o% f = t . . . . .  4; (5)  

0B 
Og + HtB~ = zocH2B~, 

(6) 
y = 0 ,  B~2=B~,,~=0, y ~ o ,  I B . ~ [ < ~ o , ] = t  .... , 4 ,  

where * refers to transposed and complex-conjugate matrix; ~ refers to complex conjugate; the 
index a indicates that the eigenvector function corresponds to the eigenvalue a. The sys- 
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tems of Eqs. (5) and (6) depend On x as a parameter. They have four linearly independent 
solutions whose asymptotic dependence on y outside the boundary layer is expressed in the 
form 

zl "" e -=v, z2 "-" e au, za --" e xy, z4 ~ e -xv, g = ] / -a  s + iRe(~ - -  ~). 

For definiteness, we choose the branch Re (%) < 0. The system of Eqs. (5) and (6) allows 
four types of solutions from the continuous spectra and one from the discrete spectrum [8, 9]. 
This discrete spectrum corresponds to Tollmien-- Schlichting waves for which the solution can 
be written in the form of a linear combination ATS = Cxzl + C3z3. Here ~TS(X) is obtained 
from the dispersion relation 

E l ~ ( ~ s )  = (znz83--zx~z~Oy=o = O, 

where zij denotes the i -th component of the j-th vector. In the continuous spectrum there 

are waves with a = +ik, a =----f- I ~ + @2 4i~ where k is an arbitrary positive 
R e  2 R e  ' 

number [8, 9]. Two of these correspond to waves propagating upstream and having exponential 
growth as x § =. The following orthogonal relation exists: 

cr 4 

<H2Aa, B B> ---- A=~,, <A, B> = y (A, B) dy, (A, B) = .~, AjB.~, 
0 j=l 

where Aa8 is the Kronecker delta, where one of the numbers (~, 8) belongs to the discrete 
spectrum; A~8 = 6(~--8) is the delta function when both the numbers (~, ~) belong to the 
continuous spectrum [8, 9]. 

In order to develop the solution to the system (i) in the form of a series in terms of 
the vector Aa, it is necessary to supplement (5) and (6) by the nonhomogeneous solution A v at 
y = 0. Outside resonance (aO~aTS) we obtain the vector Av(x , y) using the equation 

. .  O A j O y - -  HjA~ = i~oH2A~, (7) 

y = O, Avl : - - a ~  w, A~  = iao, y--)-oo, [A~j l - ) -0  , ] 1, 4- 

The solution to Eq. (7) can be written in the form 

7 ~ r tj 
= =  + %], (8) 

where zij are computed at y = O. It is easy to show the existence of the relation 

<H~A~, B=>i(= o - -  =) + (A~, B=)v= o = 0, (9) 

where ~ belongs to one of the spectra of the solutions (5), (6). 

Procedure for Solving the System (i). The solution to the problem (1)-(4) is sought 

in the form 

' % d ( 1 0 )  A (x, V) = ~ '  ~ (x) A~ (~, y) -= A~(x, y) ~xp ~ - 7 -  ' 

where E' denotes summation along the discrete spectrum and integration along the continuous 
spectrum. Substituting (I0) in (i) it is possible to obtain a system of equations for the 
determination of ca(x) , for which the initial value of c~(xx) is determined from Ao: 

c~ (x~) = <H~ (Ao - A~>, B~>~=~. (l!) 

The excitation of Tollmien--Schlichting waves as a result of thevibratingsurface is of interest 
to us. As we shall see below, it will be extremely intensive because of the presence of re- 
sonance point x,, where ~o = ~TS(X*). Of all the formulations of the problem on the genera- 
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tion of Tollmien-- Schlichting waves in the boundary layer on a vibrating surface we shall 

consider the resonance case when x, is the point at which the flow becomes unstable. This 
is so because, all other factors being the same, the greatest amplification rates are ob- 
tained for waves excited in the neighborhood of x = x,. As indicated by computations in the 

case of flat plates in incompressible flow [Ii] (see also the numerical example in compres- 
sible flow) there is a strong damping of Tollmien-- Schlichting waves in the interval from 
the leading edge to the point of instability. Hence, if the initial section is chosen quite 
close to the leading edge and the initial amplitude cTS(Xl) determined from (Ii) is of the 
order of unity, then, without a great loss of accuracy, the final result does not change if 
we put CTS(X~) = 0. The amplitude CTS(X) is expressed in the form 

. �9 ' O~TS 
cTs(x)----q(x)K(x)exp i W(x) dx , K ( x ) = e x p  ~ - ' 7 - d x  , 

Xl L Xl 

//4- aATS BTS/~. iW (x) -~ -- <H~ATs, BTS> -- \~ a~ ' 

Then for q(x) we have 

dq _ H~ BTs ' <H~A~, BTS> e x p  [~0 (x)], 
d x  ~ a.--7- ~-  

x 

o(/) :.t [ w(x)] x 
x 1 

Solving Eq. (13) with zero initial conditions, we write 

X I X 1 

x 

0 T s ( x ) - -  7~ x. 
x 1 

(12) 

(13) 

(14) 

Solution of (8) in the neighborhood of the resonance point is not suitable because at 
x = x, the function E~3(~o) in (8) becomes zero. When there is resonance (so = ~TS ) the 
solution of the problem with nonhomogeneous boundary conditions at y = 0 should necessarily 
contain simultaneously ATS and a certain vector function which ensures the fulfillment of 
the boundary conditions at y = 0. It was because of this situation that in the analysis we 
wrote the solution A (14) as a summation since it is then uniformly valid for all x. 

For the sake of convenience, we introduce the vector Q(x, y), which is regular at x = 
x, and determined from the equation 

Ao = q (x, y):'(x - x , ) .  ( 1 5 )  

Direct computations show that at x = x, the conditions Q1(x,, O) = Q3(x,, O) = 0 are satis- 

fied, i.e., at x = x,Q ~ ATS without a loss of generality we choose normalization of ATS 
such that Q(x,, y) = ATS(X,, y). The choice for the normalization of BTS can always be en- 
sured by the equation 

<H2Ays, BTS > = I. (16) 

The singular point that depends on "slowly" varying x is separated from the integral expres- 
sion in (14). For this purpose consider the expansion as x § x.: 
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N " OX ' TS/ <H,Q, BTS > 2 <IIsq" BTS> 
= x - x ,  - -  (.~: - ~:,? 5-::'--.~ J 

i W d x  = 

x I 

/ OH 2 \\  < OBTs'~ 
<Ho_Q, BTS) * t ~  Q, BTS/. * -  H~Q, ox / . . : _  <HaQ, BTS) , 

- -  (x  ~ x , ) "  x - -  x ,  x - . -  x ,  ~ x - -  x ,  

] + <H._,Q, BTS>, ~]['V ( s  -~- 0 (1) exp -- i W (x) dx  , 
:C -- ,F, 

X 1 

where the index * denotes that the scalar product is computed at x = x,. 
from (12) ,  we f ind  t h a t  the e x p r e s s i o n  (17) g ives  the  asymptote  

V x, ] / (  
--ox L- lwdx 

x 1 

+ 
Q (z, 

[ (x,)] exp -- i j" Wdx 
xl eiOTSATs A ( x , y ) =  F(x,e)  v- ~.x--x. 

~'* " exp i dx  -~- D (x, e) ATse i~ 
X - -  X ,  

~ ~i / 

OAr BTS -~- <HaA,, BTS > exp -- i F (x, ~) = -- H2 - k - 7 '  . 

\ 

-i- (x--  x,~: exp - dx dx, 

i wdx) + 

Using (16) and W 

(i7) 

(18) 

~(%- ~ s )  ( % -  ~TS) D(x ,e )~ - i  -f~-ff-_-~,) exp i ~ dx d x e x p  - - i  W d x  . 

X I x I X 1 

It is possible to ascertain that the solution (18) is regular at x = x, and satisfies 

the nonhomogeneous boundary conditions at y = 0 for all x~ x,. Since ATS is determined 
with homogeneous boundary conditions at y = 0 for all x, we get ~ATsI/~x = 9ATs3/~x = 0 at 
y = 0. Consequently, in order to show that the solution (18) satisfies boundg~y conditions 
at y = 0 and at the point x = x,, it is necessary to consider the expansion of (18) in the 
neighborhood of x, and ascertain that the term with 3Q(x,, 0)/3x ensures the satisfaction 
of Boundary conditions even at x = x,. This verification is carried out by direct computa- 
tions with the determination of Q in (15). expressions (8) for Av, taking into account that 
E1s(ao) = 0 at x = x,. The solution to the problem (1)-(4) is thus obtained. 

Asymptotic Estimate of the Amplitude of .... the Tollmien--Schlichting Wave. The integrands 

in F and D from (18) contain the factor exp(iXy %-aTs x )  d , which makes it possible to ob- 
Xl 

rain an asymptotic estimate as r + 0. In the neighborhood of x = x, we have 

d~Ts 
(~o - ~TS) - -  - -  i ~ ( x , )  ( x - -  x,) + 0[ (X - -  x , )2 ] ,  

[ d~Ts~ ^ where Real li--~.~x )>o . It is easy to obtain at x--x, >> ~ [12] that F ~ ~. D~ I/V~E, 

i.e.. the basic contribution to the amplitude of the Tollmien-- Schlichting wave in solution 
(18) is made by the term with the factor D(x, e) which attains its value ~ i/~in the 
neighborhood of x,. Using (9) as x § x,, we get 
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TABLE i 

] . l O  s IqmLa 

20 
40 
60 

R e  ~ o '  i0~ 

962 6,45 
645 7,85 
515 8;89 

2,14 
t,77 
1,57 

d~TS p 
i--77-x (x,)  = - -  a (UwBTsl -F i~BTss)y=o,x=x," 

Then t h e  b a s i c  c o n t r i b u t i o n  t o  (18)  a s  x--x,b~]/'~, d e s c r i b i n g  t h e  e x c i t e d  T o l l m i e n - -  
S c h l i c h t i n g  wave  c a n  b e  e x p r e s s e d  i n  t h e  f o r m  

I 1 ] 
w h e r e  t h e  a m p l i t u d e  g i s  d e t e r m i n e d  u s i n g  t h e  t r a n s f e r  m e t h o d  [ 1 2 ] .  
e x p r e s s i o n  

] g ~/~t < i  ~daTa2~ (x,) I (U;BTsl @ ie)BTs3)y=~ 

For !gl/a, we get the 

(19) 

Compressibility Considerations. Numerical Example. Consideration of compressible flows 
leads only to a change in the concrete form of the matrices HI, H2, and H3 in (I) and the 
determination of the vector A. In the formulation of the boundary conditions at y = 0 in 
(5) and (7) for the flow past a surface made of highly heat-conducting material, it is neces- 
sary to ensure that the temperature fluctuation should be zero. In this case the fundamental 
system of solution for the (5) and (6) will consist of six linearly independent vectors [13], 
that leads to the change in the concrete form of A v in (8). Types of eigensolutions to (5) 
for compressible flows are considered in [i0]. However, the complete asymptotic analysis 
remains as before and the result (19) remains true if we keep in view that the first and the 
third components of the vector A correspond to disturbances of the longitudinal and normal 
velocity components. In the present work a numerical computation has been carried out for 
the case of a vibrating surface of an insulated flat plate at Prandtl number 0.72, stagna- 
tion temperature 310~ and free stream Mach number 0.6, assuming that the coefficient of 
viscosity depends on temperature according to Sutherland's formula. Figure i shows the de- 
pendence of [ATSI I and [Av [ on y at Re = 800 and nondimensional frequency parameter f = 
mPo/0oU~ = 20. 10 -6 (Po is~the coefficient of viscosity in the free stream; curves i, 2 
respectively). The computation corresponds to x = I, a = 1.2, and ~ATs:/~y = 2 at y = 0. 
Figure 2 shows Real (aTS) and Im (UTS) (curves i, 2, respectively) for the frequency para- 
meter f = 20 x 10 -6 and Re = 400, and also the dependence of ao on x (curve 3). Figure 3 
shows the dependence of IKI from (12) for the same values of parameters at x~ = 0.42 which 
confirms the above mentioned considerations on the possibility of neglecting CTS(X:) (Toll- 
mien- Schlichting wave excited in the neighborhood of the leading edge). 
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Expression (19) for the amplitude of excited Tollmien--Schlichting wave is not invari- 
ant with respect to the choice of normalization of eigenfunctions ATS and B~ S. In order to 

�9 . ~ < > 

obtain the invariant value, the expression (19) has to be multlplled by IFTS/ H2ATs, BTS I, 
where FTS is the amplitude of disturbance of the physical quantity of interest to us and 
computed from the components of the eigenvector ATS. In the present paper the x component 
of the fluctuation in mass flux near its maximum was chosen as FTS. Computed results for 
various frequency parameter f are given in Table i. Also shown are the values of the para- 
meter Re corresponding to the choice of xo = x, and tile resonant values of ~o. The quantity 
qm is equal to the amplitude of disturbance of the longitudinal component of mass flow in the 
neighborhood of its maximum for the excited Tollmien--Schlichting wave. 

In the present paper the terms ~ O(a 2) were neglected in formulating the boundary con- 
ditions and it was assumed that the velocity and temperature profiles of the mean flow coin- 
cided with the corresponding profiles in the absence of vibration. This question was treated 
in detail using asymptotic techniques in [14], where it was shown that such an approximation 
is true for a << ~n, where ~n = ( ~Re)-~/2 is the thickness of the viscous wall layer. For 
such a limitation the inequality cTS << i will be satisfied and it agrees with the linear 
formulation of the given problem. 

The authors acknowledge their gratitude to V. N. Zhigulev for his attention to the work 
and discussions on the computed results. 
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